
Efficiently Scaling Transformer Inference

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, Jeff Dean
Google
MLSys 2023 (Outstanding Paper Award)

Presented by Vignesh Suresh
Feb 27, 2024



Goal of the work

Inference
• How to reduce latency for prefill and decode?
Transformer
• How to partition compute and memory?
Scaling
• How to scale to large batch sizes and sequences?
Efficiently
• How to ensure low chip cost and high utilization?



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Preliminaries

Key metrics for transfer inference
• Latency
• Throughput
• Model FLOPs utilization

System setup

TPU v41
3D Torus

1
Jouppi, Norm, et al. "TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings." ISCA 2023.



Preliminaries - 2

Run single parallel forwards pass for:
𝐵 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ∗ 𝐿!"#$% 𝑡𝑜𝑘𝑒𝑛𝑠

Run sequential (autoregressive) forwards pass for:
𝐿&'" 𝑡𝑜𝑘𝑒𝑛𝑠

Source: https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

Question: are there use-cases where prefill is 
more critical to optimize and vice-versa?



Preliminaries - 3

Models get larger à Need to partition across chips

How does that impact compute and memory costs for inference?
• Compute time: not much change — time to perform matrix multiply
• Memory time:

• Need to load weights and KV cache
• Small batches: Weights dominate
• Large batches: KV cache dominates



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Expected trade-offs

Trade-offs change with different use cases:

Offline inference: Small and large batches require different partitioning strategies

Small batch size

Low utilization
High cost Large KV cache

Large batch size
Long sequences

Low latency 
inference

Long context 
inference



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Partitioning Feedforward Layer

1D weight-stationary layout
• 𝐸 ∗ 𝐹 weight matrix stationary sharded along 𝐸 or 𝐹 axis.
• 𝐵 ∗ 𝐿 ∗ 𝐸 activation matrix also partitioned across all chips.

BLExyz

EFxyz

Activations

Win



Partitioning Feedforward Layer

1D weight-stationary layout
• 𝐵 ∗ 𝐿 ∗ 𝐸 activation matrix aggregated using all-gather.
• First matrix multiply performed.

BLExyz

EFxyz

Activations

Win

all-gather(xyz)

Einsum
BLE



Partitioning Feedforward Layer

1D weight-stationary layout
• Output 𝐵 ∗ 𝐿 ∗ 𝐹!"# matrix input to GELU activation.
• Second 𝐸 ∗ 𝐹 weight matrix sharded along second axis.

BLExyz

EFxyz

Activations

Win

all-gather(xyz)

Einsum
BLE

GELU
BLFxyz

FxyzE
Wout

Output and input axis flip “trick” to 
reduce communication



Partitioning Feedforward Layer

1D weight-stationary layout
• Second matrix multiply performed.
• Partial sum is reduce-scatter-ed to all chips

BLExyz

EFxyz

Activations

Win

all-gather(xyz)

Einsum
BLE

GELU
BLFxyz

FxyzE
Wout

Einsum
BLE

(partialsum-xyz)

BLExyz

re
du

ce
-s

ca
tt

er
(x

yz
)



Partitioning Feedforward Layer

1D weight-stationary layout
• As the chips increase:

• Compute and memory time decrease
• Communication time constant (eventually bottleneck)

• Communication cost (all-gather + reduce-scatter):



Partitioning Feedforward Layer

Extending to 2D weight-stationary layout:
• Partition weight across both 𝐸 and 𝐹 axes.
• Communication is more efficient:

• Alternate axis to perform aggregation
• Adds two more collective operations

• Scales as 𝑂 -
.!"#$%

– more chips reduces latency! 

• Communication cost:



Partitioning Feedforward Layer

Extending to weight-gathered layout :
• As batch size increase

• Keep activations stationary
• Transfer weights between chips

• You could also have a hybrid approach:
• Both are transferred across different axes
• They propose XY-weight gathered used in prefill
• Weight across X and Y; activations across Z

• Communication cost:



Partitioning Feedforward Layer

Trade-offs between the approaches:
• How do they scale with batch size?

• Question: why linear?

???



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Partitioning Attention Layer

Changes to model architecture:
• Multi-query attention vs. multi-head attention

• 𝑛/0123 for the query, but one head for the key and value

• Parallel formulation vs. serialized formulation of transformer
• Question: Megatron-style model parallel and multi-query?



Partitioning Attention Layer



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Case study – PaLM models

Large transformer model from Google:
• Predecessor to the new Gemini model
• Incorporates multi-query attention and parallel transformer.
• Thought: case of model-system co-design

See Chowdhery, et al. "Palm: Scaling language modeling with pathways.”



Impact of partitioning feedforward layer

Performance of decoding
Latency Scaling with Chip Count

Performance of prefill
Utilization Scaling with Batch size



Impact of partitioning attention layer
Performance of decoding

Latency Scaling with Sequence Length

Question: what about prefill?



End-to-End results



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Comparison with FasterTransformer



Summary
Inference
• Prefill and decoding have different trade-offs
Transformer
• PaLM model with multi-query attention and parallel formulation
Scaling
• Partitioning strategies for feedforward and attention
Efficiently
• Different strategies are efficient for different use cases:

• chip count/batch size/sequence length



Overview

Preliminaries
Expected trade-offs
Partitioning feedforward layer
Partitioning attention
Results from PaLM
Comparison with FasterTransformer
Discussion



Discussion

• Initial thoughts?
• What is a more generalized strategy for any transformer architecture?
• GPU vs TPU

• This paper does not make a case to use TPU over GPU (they could have)
• So, what is the case for TPU?

• How can we further improve decoding utilization? (~40% for PaLM)


