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Goal of the work

Inference
« How to reduce latency for prefill and decode?

Transformer
« How to partition compute and memory?

Scaling
« How to scale to large batch sizes and sequences?

Efficiently
« How to ensure low chip cost and high utilization?
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Preliminaries

Key metrics for transfer inference System setup
« Latency
° Throughput C;lip — CTip —— Chip —~ Chip
« Model FLOPs utilization R R e
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TPU v4!

lJouppi, Norm, et al. "TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings." ISCA 2023.



Preliminaries - 2

(Q* K*T) * V computation process with caching
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Source: https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

Run single parallel forwards pass for:
B sequences * Lippy; tokens

Run sequential (autoregressive) forwards pass for:
Lyen tokens

Question: are there use-cases where prefill is
more critical to optimize and vice-versa?




Preliminaries - 3

Models get larger = Need to partition across chips

How does that impact compute and memory costs for inference?
« Compute time: not much change — time to perform matrix multiply

« Memory time:
« Need to load weights and KV cache
« Small batches: Weights dominate
« Large batches: KV cache dominates
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Expected trade-offs

Trade-offs change with different use cases:

Low utilization
High cost Large KV cache

Small batch size & Large batch size &
y Long sequences%R

Low latency Long context
inference inference

Offline inference: Small and large batches require different partitioning strategies
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Partitioning Feedforward Layer

1D weight-stationary layout
- E x F weight matrix stationary sharded along E or F axis.
« B x L *x E activation matrix also partitioned across all chips.
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Partitioning Feedforward Layer

1D weight-stationary layout
« B x L x E activation matrix aggregated using all-gather.
 First matrix multiply performed.
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Partitioning Feedforward Layer

1D weight-stationary layout
« Output B * L * F,,,, matrix input to GELU activation.

« Second E * F weight matrix sharded along second axis.
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Output and input axis flip “trick” to
reduce communication



Partitioning Feedforward Layer

1D weight-stationary layout
« Second matrix multiply performed.
« Partial sum is reduce-scatter-ed to all chips
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Partitioning Feedforward Layer 1D weight.

stationary v
1D weight-stationary layout b [w .
. Asthe chipsincrease: e
. Compute and memory time decrease o/
» Communication time constant (eventually bottleneck) oLr,, >

« Communication cost (all-gather + reduce-scatter): o)

T QB LE einsum
comm — . | BLE parﬂalsum-v.-;yz)
network bandwidth /reduce-scatter(:2),
BLE,,,
O




Partitioning Feedforward Layer

1D weight- 2D weight-
stationary ,  stationary

Extending to 2D weight-stationary layout: o
 Partition weight across both E and F axes. L] (Fr) = er]

all-gather(xyz) all-gather(yz)

« Communication is more efficient: s

einsum

o Alternate axis to perform aggregation i o7 paasum-) Voo

. . BLFyyz 2 /reduce-scatter(x)

. Adds two more collective operations T
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Partitioning Feedforward Layer Weight

gathered oy
Extending to weight-gathered layout : e
. . \

. Asbatch size increase .

« Keep activations stationary B% .

. Transfer weights between chips loor, [
« You could also have a hybrid approach: (oolu ) irgaeri

« Both are transferred across different axes /%

« They propose XY-weight gathered used in prefill [ emsi’mn-]. )

« Weight across Xand Y; activations across Z reduce-scatterz)
« Communication cost: BLF +

Tcomm =4k ©

/Tehips X network bandwidth



Partitioning Feedforward Layer

Communication Volume Comparison
Trade-offs between the approaches: i

. . —— Weight-stationary
« How do they scale with batch size? X-weight-gathered >
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o Question: Why “ nea r? 20'00 20(300 ZOOIOOO 2006000
Tokens per Batch
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Partitioning Attention Layer

Changes to model architecture:

« Multi-query attention vs. multi-head attention
e Mpeqds TOr the query, but one head for the key and value

Multi-head attention Multi-query attention

() <§1heads FQWheads

1 1

K/V ‘

| |heads

!\ 1 R

]

time time

« Parallel formulation vs. serialized formulation of transformer
« Question: Megatron-style model parallel and multi-query?



Partitioning Attention Layer

Multi-head attention Multi-query attention
(sharded over heads) (sharded over batch)
H H z 2 H H activations after activations after
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Multi-head attention can be Multi-query attention requires Instead by sharding over batch, all-to-all (xyz)
sharded across heads full replication of the single only a slice of K is needed for all-gather(x) : Y
without replication head for K, increasing einsum, reducing memory all-gather(x) B: batch
memory access cost. access cost. L: sequence length
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Case study - PaLM models

Large transformer model from Google:
« Predecessor to the new Gemini model
 Incorporates multi-query attention and parallel transformer.

« Thought: case of model-system co-design

See Chowdhery, et al. "Palm: Scaling language modeling with pathways.”



Impact of partitioning feedforward layer

Performance of decoding Performance of prefill

Latency Scaling with Chip Count Utilization Scaling with Batch size
Weight Stationary: 2D vs. 1D 2D Weight Stationary vs. Gathered
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Impact of partitioning attention layer

Performance of decoding
Latency Scaling with Sequence Length

Multiquery vs. Multihead Attention (8 layers)
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Context Sequence Length Question: what about prefill?




End-to-End results

Cost (Chip-Milliseconds per Token)

Decoding Latency vs. Cost

128
—— PalM 540B C:128, B:64
64 | —@— PalLM 540B-int8
—o— PalM 62B Ci64. B:64
32 4 —e— PalLM 62B-int8 C:64, B:128
~&— PalM 8B
167 PaLM 8B-int8 C:64, B1024
8 -
4
C:16, B:32
2 -
C:8, B:1024
1 .
0.5 A
C:8,/B:1024
0.25 A
0.125 1
0.0625 T T T T T T T
2 4 8 16 32 64 128 256

Latency per Generated Token (Milliseconds)

512

Cost (Chip-Milliseconds per Token)

128

Prefill Latency vs. Cost

64 1

32 A1

16 1

0.5 A

0.25 A

0.125 A

0.0625

-&— PalLM 540B
—@— PalLM 540B-int8
—8— PalM 62B
=@ PalLM 62B-int8
-@— PalLM 8B
PaLM 8B-int8
C:64, B:4 C:32, B:64
O 'y
C:64, Bi512
C:64, B:1 “._.
C:16, B:1
C:64, B:128
C:32,/B:512
C:8, B:1 C:8,-B:4
\ €:32,B{512
——e
T T T T T T

0.03006012 025 05 1 2 4 8 16 32 64 128 256
Latency per Forward Pass (Seconds)



Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PalLM

Comparison with FasterTransformer
Discussion




Comparison with FasterTransformer
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Summary

Inference

« Prefill and decoding have different trade-offs

Transformer

e PaLM model with multi-query attention and parallel formulation
Scaling

« Partitioning strategies for feedforward and attention

Efficiently

« Different strategies are efficient for different use cases:
« chip count/batch size/sequence length
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Discussion

e Initial thoughts?

- Whatis a more generalized strategy for any transformer architecture?
« GPUvsTPU

« This paper does not make a case to use TPU over GPU (they could have)
« So,whatisthe case for TPU?

« How can we further improve decoding utilization? (~40% for PaLM)



