Efficiently Scaling Transformer Inference

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,

Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, Jeff Dean
Google

MLSys 2023 (Outstanding Paper Award)

Presented by Vignesh Suresh
Feb 27,2024

1[ILLINOIS

URBANA-CHAMPAIGN

Goal of the work

Inference
« How to reduce latency for prefill and decode?

Transformer
« How to partition compute and memory?

Scaling
« How to scale to large batch sizes and sequences?

Efficiently
« How to ensure low chip cost and high utilization?

Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PalLM

Comparison with FasterTransformer
Discussion

Preliminaries

Key metrics for transfer inference System setup
« Latency
° Throughput C;lip — CTip —— Chip —~ Chip
« Model FLOPs utilization R R e
,‘ ip ‘ ip ip
”3DTOFL;S

TPU v4!

lJouppi, Norm, et al. "TPU v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings." ISCA 2023.

Preliminaries - 2

(Q* K*T) * V computation process with caching

Keys_Transpose
Step 1 -
Queries Values Results
—
5 ‘X X = 4
-l | ===
o
64 64 64
“
l(.ﬂ(hing K l(achmg v
l Restoring Restoring
from cache K from cache V
Step N Keys_Transpose
d Values
L
© Queries Results
S | ¥ -) 4 ; o
Q 64 64
64
5
Values that will be computed on this step Values that will be taken from cache

Source: https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

Run single parallel forwards pass for:
B sequences * Lippy; tokens

Run sequential (autoregressive) forwards pass for:
Lyen tokens

Question: are there use-cases where prefill is
more critical to optimize and vice-versa?

Preliminaries - 3

Models get larger = Need to partition across chips

How does that impact compute and memory costs for inference?
« Compute time: not much change — time to perform matrix multiply

« Memory time:
« Need to load weights and KV cache
« Small batches: Weights dominate
« Large batches: KV cache dominates

Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PaLM
Comparison with FasterTransformer
Discussion

Expected trade-offs

Trade-offs change with different use cases:

Low utilization
High cost Large KV cache

Small batch size & Large batch size &
y Long sequences%R

Low latency Long context
inference inference

Offline inference: Small and large batches require different partitioning strategies

Overview

Preliminaries

Expected trade-offs

Partitioning feedforward layer
Partitioning attention

Results from PaLM

Comparison with FasterTransformer
Discussion

Partitioning Feedforward Layer

1D weight-stationary layout
- E x F weight matrix stationary sharded along E or F axis.
« B x L *x E activation matrix also partitioned across all chips.

| Chip — [lp Tl ip - Chip BLExyz
Chip +— Chip +— Chip #— Chip Activations
||
Chip +— Chip +— Chip — Chip
\| Chip —- Chip — Chip —- Chip
$ \ d \ # 4 Wln

Partitioning Feedforward Layer

1D weight-stationary layout
« B x L x E activation matrix aggregated using all-gather.
 First matrix multiply performed.

[Ciie 7 ce 7y cib i Gk | | BLE,y,
“ [/ all-gather(xyz)
‘\ l‘ . . B
Chip 1 Chip — Chip +— Chip Activations LE
||

Chip +— Chip +— Chip — Chip

\| Chip —- Chip — Chip —- Chip

$ \ d \ # 4 Wln

Partitioning Feedforward Layer

1D weight-stationary layout
« Output B * L * F,,,, matrix input to GELU activation.

« Second E * F weight matrix sharded along second axis.

oo |f| cne [f] e e | | BLE,,
[| all-gather(xyz)
Chip +— Chip +— Chip #— Chip Activations
||
Chip +— Chip +— Chip — Chip
\| Chip — Chip — Chip —- Chip

Output and input axis flip “trick” to
reduce communication

Partitioning Feedforward Layer

1D weight-stationary layout
« Second matrix multiply performed.
« Partial sum is reduce-scatter-ed to all chips

oy n w2 @
/| chip — chip —4 chip —+ chi N
| Chip — ip al ip —f Chip BLExyz i))
[| all-gather(xyz) z
[| . . [V}
Chip +— Chip +— Chip #— Chip Activations %
| 3 BLE,,,
()
Chip +— Chip ~— Chip — Chip O
\ , (partialsum-xyz) 5
‘ : o
\| Chip — Chip — Chip —- Chip
4 \ 4 \ B 4

Partitioning Feedforward Layer 1D weight.

stationary v
1D weight-stationary layout b [w .
. Asthe chipsincrease: e
. Compute and memory time decrease o/
» Communication time constant (eventually bottleneck) oLr,, >

« Communication cost (all-gather + reduce-scatter): o)

T QB LE einsum
comm — . | BLE parﬂalsum-v.-;yz)
network bandwidth /reduce-scatter(:2),
BLE,,,
O

Partitioning Feedforward Layer

1D weight- 2D weight-
stationary , stationary

Extending to 2D weight-stationary layout: o
 Partition weight across both E and F axes. L] (Fr) = er]

all-gather(xyz) all-gather(yz)

« Communication is more efficient: s

einsum

o Alternate axis to perform aggregation i o7 paasum-) Voo

. . BLFyyz 2 /reduce-scatter(x)

. Adds two more collective operations T
Cgeiv) Cgeiu)

1 :
« ScalesasO () — more chips reduces latency! al-gatner()
v Nchips | BLF.yz
» Communication cost: zzi;‘f:cb::::::::”
B S8BLE
—®

T = ,
comm /Tichips X Network bandwidth ——®

Partitioning Feedforward Layer Weight

gathered oy
Extending to weight-gathered layout : e
. . \

. Asbatch size increase .

« Keep activations stationary B% .

. Transfer weights between chips loor, [
« You could also have a hybrid approach: (oolu) irgaeri

« Both are transferred across different axes /%

« They propose XY-weight gathered used in prefill [emsi’mn-].)

« Weight across Xand Y; activations across Z reduce-scatterz)
« Communication cost: BLF +

Tcomm =4k ©

/Tehips X network bandwidth

Partitioning Feedforward Layer

Communication Volume Comparison
Trade-offs between the approaches: i

. . —— Weight-stationary
« How do they scale with batch size? X-weight-gathered >

227
- XY-weight-gathered e
—— XYZ-weight-gathered
* Min volume

100 A

10 -

Communication Volume (GB)

o Question: Why “ nea r? 20'00 20(300 ZOOIOOO 2006000
Tokens per Batch

Overview

Preliminaries

Expected trade-offs

Partitioning feedforward layer
Partitioning attention

Results from PaLM

Comparison with FasterTransformer
Discussion

Partitioning Attention Layer

Changes to model architecture:

« Multi-query attention vs. multi-head attention
e Mpeqds TOr the query, but one head for the key and value

Multi-head attention Multi-query attention

() <§1heads FQWheads

1 1

K/V ‘

| |heads

!\ 1 R

]

time time

« Parallel formulation vs. serialized formulation of transformer
« Question: Megatron-style model parallel and multi-query?

Partitioning Attention Layer

Multi-head attention Multi-query attention
(sharded over heads) (sharded over batch)
H H z 2 H H activations after activations after
Multi-head attention, Multi-query attention, Multi-query attention, Wo/W\/Wy projection z | Wo/Wi/Wy projection 7 |
sharded over heads sharded over heads sharded over batch <\ e Ny
partialsum-x partialsum-x ’
heads heads heads /reduce-scatter(x) 7 y reduce-‘scatter(x)/
time Device 1| time Device 1| time Device 1 Keache Veache el to-ell oy Kcache Veache
5 Q | Q Q K v (BLr020) BLr Q K v ByslQ |[B,.LQ
b "% 28 vzQ Xyz Xyz!
@ @ = @ BLH,,.Q BLHxyzQ M —nyzLHQ BxyzLQ BxyzLQ
K/V | K/V AN] K/V (concat(L)]
t(L,
3 Device 2 Ko, Device 2 Device 2 mask concat(L)
Q € Q \ Q |7
® .. S) ® © ‘ BLLHyz
K / v _ K / v % K / v o e ety elnsum
] = BLH,,,Q
Multi-head attention can be Multi-query attention requires Instead by sharding over batch, all-to-all (xyz)
sharded across heads full replication of the single only a slice of K is needed for all-gather(x) : Y
without replication head for K, increasing einsum, reducing memory all-gather(x) B: batch
memory access cost. access cost. L: sequence length

H: num heads
[BLH“Q] Q: head dim

W projection W projection

Overview

Preliminaries

Expected trade-offs

Partitioning feedforward layer
Partitioning attention

Results from PaLM

Comparison with FasterTransformer
Discussion

Case study - PaLM models

Large transformer model from Google:
« Predecessor to the new Gemini model
 Incorporates multi-query attention and parallel transformer.

« Thought: case of model-system co-design

See Chowdhery, et al. "Palm: Scaling language modeling with pathways.”

Impact of partitioning feedforward layer

Performance of decoding Performance of prefill

Latency Scaling with Chip Count Utilization Scaling with Batch size
Weight Stationary: 2D vs. 1D 2D Weight Stationary vs. Gathered
120 100%
" —e— 2D Weight Stationary —e— 2D Weight Stationary
-8 1D Weight Stationary 90% 1 2D Weight Gathered
8 g 80% A
Q =
£ 100 1 N 70%
£ 5 60%-
) g 50%
LC 9 40% 1 @ o < —19
0 80 -
o % 30% A
g S 20%
(V]
% 10% A
-
60— . : 0% . : ;
64 128 256 125000 250000 500000 1000000

Chip count Tokens per Batch

Impact of partitioning attention layer

Performance of decoding
Latency Scaling with Sequence Length

Multiquery vs. Multihead Attention (8 layers)

60

w —e— Multiquery (Optimized Layout) é
-8 Multiquery (Inefficient Layout) Iy
5 —e— Multihead /)
Q /
n /
— /
= 40 - 7
/
£ /
/

o /
Q /
+ /
wn /
— /
W 20 - /’
e ¢
> _--
U -
c -
o _”
% .—_————"’—,4
— Y \ G ¢

0 4+— ' ' ;

128 512 2048 8192

Context Sequence Length Question: what about prefill?

End-to-End results

Cost (Chip-Milliseconds per Token)

Decoding Latency vs. Cost

128
—— PalM 540B C:128, B:64
64 | —@— PalLM 540B-int8
—o— PalM 62B Ci64. B:64
32 4 —e— PalLM 62B-int8 C:64, B:128
~&— PalM 8B
167 PaLM 8B-int8 C:64, B1024
8 -
4
C:16, B:32
2 -
C:8, B:1024
1 .
0.5 A
C:8,/B:1024
0.25 A
0.125 1
0.0625 T T T T T T T
2 4 8 16 32 64 128 256

Latency per Generated Token (Milliseconds)

512

Cost (Chip-Milliseconds per Token)

128

Prefill Latency vs. Cost

64 1

32 A1

16 1

0.5 A

0.25 A

0.125 A

0.0625

-&— PalLM 540B
—@— PalLM 540B-int8
—8— PalM 62B
=@ PalLM 62B-int8
-@— PalLM 8B
PaLM 8B-int8
C:64, B:4 C:32, B:64
O 'y
C:64, Bi512
C:64, B:1 “._.
C:16, B:1
C:64, B:128
C:32,/B:512
C:8, B:1 C:8,-B:4
\ €:32,B{512
——e
T T T T T T

0.03006012 025 05 1 2 4 8 16 32 64 128 256
Latency per Forward Pass (Seconds)

Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PalLM

Comparison with FasterTransformer
Discussion

Comparison with FasterTransformer

B=128
40% A
o=
@)
5
© 30%-
— B=256
&4
-
wn
(a1
O 20% A
|
TH
(0]
O Ours (PaLM Model, 64 chips)
S 10% - :
=S Ours (Megatron Model, 64 chips)
FasterTransformer - TP8/PP3
FasterTransformer - TP16
0% FasterTransformer - TP32
£l

T T T T T

6 8

Latency (Seconds)

Summary

Inference

« Prefill and decoding have different trade-offs

Transformer

e PaLM model with multi-query attention and parallel formulation
Scaling

« Partitioning strategies for feedforward and attention

Efficiently

« Different strategies are efficient for different use cases:
« chip count/batch size/sequence length

Overview

Preliminaries

Expected trade-offs
Partitioning feedforward layer
Partitioning attention

Results from PalLM

Comparison with FasterTransformer
Discussion

Discussion

e Initial thoughts?

- Whatis a more generalized strategy for any transformer architecture?
« GPUvsTPU

« This paper does not make a case to use TPU over GPU (they could have)
« So,whatisthe case for TPU?

« How can we further improve decoding utilization? (~40% for PaLM)

